

Welcome

2011

Michael Cotton

U.S. Department of Commerce

National Telecommunications and Information Administration

Institute for Telecommunication Sciences • Boulder, CO

Conference Logistics

- Conference materials
- Room layout
- Meetings: WSRD-SSG and CSMAC
- DFS Test System Demo
- Food
- Internet resources www.its.bldrdoc.gov/isart
- Boulder
- Informal social events: Hike and happy hour

Current Background

- ISART (in general)
- FCC National Broadband Plan
- Presidential Memo
- NTIA Plan and Fast Track Recommendations
- Proposed legislation

- Economic Constraints
 - Established legacy
 - Lack of incentive
 - Budgetary constraints
- Technical Complexity
 - Technology is moving to wider bandwidths
 - Advanced Technical knowledge
 - needed to forecast success/failure of repurposed spectrum
 - Variety of systems and usage models
- Stakeholder Dynamics
 - Diverse array of stakeholders, roles, and relationships
 - Competing self-interests

Diverse Array of Stakeholders, Roles, and Relationships

- Government
- International communities
- Spectrum managers and regulators
- Federal and privatesector incumbents
- Big business and lobbyists

- Think tanks
- Unlicensed users and small business
- Acquisition offices and investors
- Technologists, innovators, and R&D
- Standards bodies
- Application users

- Federal vs. commercial
- Science vs. politics
- Regulators vs. regulated
- Profit vs. social benefit
- Short-term vs. long-term

- Licensed vs. unlicensed
- Business X vs. business Y
- Agency X vs. agency Y
- Business X vs. agency Y
- Service X vs. service Y

ISART 2010 - Spectrum Sharing

- Format Goal: Multi-stakeholder, multi-disciplinary debate and discussions
- Principle-Based Goal: To evaluate sharing as a means of improving overall utilization of the spectrum
- Session Topics:
 - DSA Technologies and Rules
 - Measuring Spectrum Occupancy
 - Interference Protection Criteria
 - Spectrum Management
 - Sharing LMR Bands

- Sharing Radar Bands
- Business
- Context Awareness
- Research

ISART 2010 - Conclusions

- There are successful spectrum sharing solutions, largely amongst existing spectrum holders
- There are other DSA solutions beyond sensing—
 e.g., database, beaconing
- Primary obstacles are trust and complexity of sharing scenarios
- DSA technology is somewhat captured in R&D until regulators provide a big enough sandbox to justify investment
- Conflicting self-interests cause information-sharing asymmetries
- Need for flexible funding structures, incentives, and continued Executive/Legislative support

ISART 2010 - Unanswered Q's

- What whitespace should be used for spectrum sharing? Why?
- What are the IPC's of incumbent systems? What technologies and upgrades are available to make systems less susceptible to each other?
- What information is available to improve context awareness and enable cognition and/or DSA?
- Are there legitimate spectrum sharing business models?
- What rules and regulations would promote harmonious coexistence and sharing?

Spectrum Discussions

RS#1 RS#2 RS#3 RS#4 RS#5
Radio Service

Reallocation: Inventory, Technology Alternatives

Relocation: Inventory, Spectrum Alternatives

Spectrum Sharing: Interference Protection Criteria, Propagation, Information Sharing, DSA

Technology Upgrade, Re-engineering, and R&D: Digital Signal Processing, Adaptive Antennas

Rules, Regulation & Enforcement: Trust, Access

- Inventory usage models, operational parameters, and propagation to identify underutilized spectrum and whitespace.
- Evaluate compatibility with other systems.
- Re-engineer to achieve optimal spectrum efficiency,
 e.g., reduce out-of-band emission, reduce susceptibility
 to interference, enable information sharing.
- Assess viability of sharing business models and markets.
- Develop rules and a regulatory framework for improving utilization.

ISART 2011

- Principle-based goal: To develop forwardthinking rules and processes to fully exploit spectrum resources.
- Chosen radio service: Radar
- •Format goal: To bring together the radar and communications communities for idea sharing and collaboration in an effort to engineer the radar spectrum for maximum benefit to all stakeholders.

Why Radar?

- Radar spectrum is being squeezed, and in some cases performance is being degraded
- ◆Uses a lot of spectrum 1537 MHz or 45% of spectrum between 300 MHz and 3700 MHz
- Radar has existed a long time there is good reason to examine radar spectrum efficiency
- Potential for good quality whitespace
- Advanced R&D community

ISART 2011 Outline

- Lectures Bill Melvin (GTRI/SEAL)
- Inventory Briefings Matthew Hussey (Senator Snowe)
- Keynotes Thomas Power (NTIA), Phil Weiser (CU)
- Overview Panel Michael Calabrese (New America)
- International Radar Compatibility John Mettrop (CAA)
- Radar R&D Joe Guerci (Guerci Consulting)
- Sharing with Commercial Systems Julius Knapp (FCC)
- Regulatory Reform to Facilitate Spectrum Sharing Eric Nelson (NTIA/ITS)

Acknowledgements

- •ITS'ers
- Co-Chair
- Steering Committee
- Session Chairs
- Speakers